Add like
Add dislike
Add to saved papers

A high-throughput all-optical laser-scanning imaging flow cytometer with biomolecular specificity and subcellular resolution.

Image-based cellular assay advances approaches to dissect complex cellular characteristics through direct visualization of cellular functional structures. However, available technologies face a common challenge, especially when it comes to the unmet need for unraveling population heterogeneity at single-cell precision: higher imaging resolution (and thus content) comes at the expense of lower throughput, or vice versa. To overcome this challenge, a new type of imaging flow cytometer based upon an all-optical ultrafast laser-scanning imaging technique, called free-space angular-chirp-enhanced delay (FACED) is reported. It enables an imaging throughput (>20 000 cells s-1 ) 1 to 2 orders of magnitude higher than the camera-based imaging flow cytometers. It also has 2 critical advantages over optical time-stretch imaging flow cytometry, which achieves a similar throughput: (1) it is widely compatible to the repertoire of biochemical contrast agents, favoring biomolecular-specific cellular assay and (2) it enables high-throughput visualization of functional morphology of individual cells with subcellular resolution. These capabilities enable multiparametric single-cell image analysis which reveals cellular heterogeneity, for example, in the cell-death processes demonstrated in this work-the information generally masked in non-imaging flow cytometry. Therefore, this platform empowers not only efficient large-scale single-cell measurements, but also detailed mechanistic analysis of complex cellular processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app