Add like
Add dislike
Add to saved papers

Glucocorticoid mediates prenatal caffeine exposure-induced endochondral ossification retardation and its molecular mechanism in female fetal rats.

Cell Death & Disease 2017 October 27
Our previous studies discovered that prenatal caffeine exposure (PCE) could induce intrauterine growth retardation (IUGR) and long-bone dysplasia in offspring rats, accompanied by maternal glucocorticoid over-exposure. This study is to explore whether intrauterine high glucocorticoid level can cause endochondral ossification retardation and clarify its molecular mechanism in PCE fetal rats. Pregnant Wistar rats were intragastrically administered 30 and 120 mg/kg day of caffeine during gestational days (GDs) 9-20, then collected fetal serum and femurs at GD20. In vitro, primary chondrocytes were treated with corticosterone (0-1250 nM), caffeine (0-100 μM), mitogen-inducible gene 6 (Mig-6) siRNA and epidermal growth factor receptor (EGFR) siRNA, respectively, or together. Results showed that the hypertrophic chondrocytes zone (HZ) of PCE fetal femur was widened. Meanwhile, the expression levels of chondrocytes terminal differentiation genes in the HZ were decreased, and the chondrocytes apoptosis rate in the HZ was decreased too. Furthermore, PCE upregulated Mig-6 and suppressed EGFR expression in the HZ. In vitro, a high-concentration corticosterone (1250 nM) upregulated Mig-6 expression, inhibit EGFR/c-Jun N-terminal kinase (JNK) signaling pathway and terminal differentiation genes expression in chondrocytes and reduced cell apoptosis, and these above alterations could be partly reversed step-by-step after Mig-6 and EGFR knockdown. However, caffeine concentration dependently increased chondrocyte apoptosis without significant changes in the expression of terminal differentiation genes. Collectively, PCE caused endochondral ossification retardation in the female fetal rats, and its main mechanism was associated with glucocorticoid (rather than caffeine)-mediated chondrocyte terminal differentiation suppression by the upregulation of Mig-6 and then inhibition of EGFR/JNK pathway-mediated chondrocyte apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app