Add like
Add dislike
Add to saved papers

Multistimulative Nanogels with Enhanced Thermosensitivity for Intracellular Therapeutic Delivery.

The flexibility and hydrophilicity of nanogels suggest their potential for the creation of nanocarriers with good colloidal stability and stimulative ability. In the present study, biocompatible AGP and AGPA nanogels with triple-stimulative properties (thermosensitivity, pH sensitivity, and redox sensitivity) were prepared by incorporating poly(N-isopropylacrylamide) (PNIPAM) or poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-AA)) into alginate (AG) emulsion nanodrops, followed by fixation with a disulfide-containing molecule (cystamine dihydrochloride (Cys)). Compared to AG/PNIPAM(AGP) nanogels, AG/P(NIPAM-AA) (AGPA) nanogels exhibited more sensitive volumetric expansion by switching the temperature from 40 to 25 °C under physiological medium. This expansion occurs because P(NIPAM-AA) with -COOH groups can be fixed inside the nanogels via chemical bonding with Cys, whereas PNIPAM was encapsulated in the nanogels through simple physical interactions with the AG matrix. AGPA nanogels carrying an anticancer drug tend to easily enter cells upon heating, thereby exerting toxicity through a cold shock and reverse thermally induced release of an anticancer drug. Upon internalization inside cells, the nanogels use the reducible and acidic intracellular environments to effectively release the drug to the nucleus to impart anticancer activity. These results demonstrate that multifunctional nanogels may be used as a general platform for therapeutic delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app