Add like
Add dislike
Add to saved papers

In Vitro Effect of Bleaching With 810 nm and 980 nm Diode Laser on Microhardness of Self-cure and Light-Cure Glass Ionomer Cements.

Introduction: This study sought to assess the effect of bleaching combined with irradiation of 810 nm and 980 nm diode laser on microhardness of 2 commonly used self-cure and light-cure glass ionomer cements (GICs) in comparison with conventional bleaching (without laser). Methods: In this in vitro, experimental study, 60 samples were fabricated of A2 shade of Fuji IX and Fuji II LC GICs (n=30) and each group was divided into 3 subgroups (n=10). The first subgroups were subjected to bleaching with Opalescence Xtra Boost plus 980 nm diode laser irradiation. The second subgroups were subjected to bleaching with Opalescence Boost plus 810 nm diode laser irradiation and the third subgroups were subjected to bleaching with Opalescence Xtra Boost without laser. Microhardness was measured at baseline and after the intervention using Vickers hardness tester. The data were analyzed using two-way analysis of variance (ANOVA) ( P <0.05). Results: Microhardness decreased in all subgroups after the intervention (P<0.001) irrespective of the type of GIC ( P =0.201) or surface treatment ( P =0.570). The baseline microhardness of the three subgroups within each group of GIC was not significantly different ( P =0.456), but the baseline microhardness of conventional GIC was significantly higher than that of resin modified GIC ( P =0.004). Conclusion: Bleaching with/without laser irradiation decreases the microhardness of GICs. The baseline microhardness of conventional GIC is higher than that of resin modified GIC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app