ENGLISH ABSTRACT
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

[Relationship between cytoplasmic phospholipase A2 and nuclear factor κB in one lung ventilation-induced lung injury in rabbits].

OBJECTIVE: To elucidate the mechanisms of up regulated expression of cytoplasmic phospholipase A2 (CPLA2) induced by one lung ventilation (OLV) by investigating the interactions between nuclear factor kappaB (NF-κB) and C-PLA2.

METHODS: Forty-eight healthy Japanese white rabbits were randomized into control group, solvent treatment group (group S), NF-κB inhibitor (PDTC)/solvent treatment group ( group PS), C-PLA2 inhibitor (AACOCF3)/solvent treatment group (group AS), OLV group (group O), solvent treatment plus OLV group (SO group), NFκB inhibitor (PDTC)/solvent treatment plus OLV group (group PSO) and CPLA2 inhibitor (AACOCF3)/solvent treatment plus OLV group (group ASO). ELISA was used to detect arachidonic acid (AA) content in the lung tissues, and NFκB and CPLA2 expressions were detected by Western blotting and quantitative PCR. Lung injuries were assessed based on the lung histological score, and the polymorphonuclear leukocyte count in the bronchial alveolar lavage fluid, myeloperoxidase (MPO) content in the lung tissues, and lung wet/dry weight (W/D) raito were determined.

RESULTS: Treatment of the rabbits with the solvent did not produce any adverse effects. OLV caused obvious lung injury in the rabbits and up regulated the expressions of CPLA2 and NFκB in the lung tissues (P<0.05). In rabbits without OLV, treatment with AACOCF3 or PDTC significantly down regulated both CPLA2 and NFκB expressions without affecting the other parameters. In rabbits with OLV, treatment with AACOCF3 or PDTC obviously lowered CPLA2 and NFκB expressions and lessened the OLV-induced lung injuries.

CONCLUSION: Both C-PLA2 and NF-κB play important roles and show interactions in OLV-induced lung injury in rabbits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app