Add like
Add dislike
Add to saved papers

Removal of Hg, As in FGD gypsum by different aqueous ammonia (amines) during CO 2 sequestration.

CO2 sequestration by flue gas desulfurization gypsum (FGDG) has become a promising FGDG disposal technology due to simultaneous CO2 emission reduction and FGDG conversion into calcium carbonate. In this paper, another merit of the novel technology, i.e., the removal of toxic elements (e.g., Hg and As) in FGDG, will be addressed for the first time. In three different aqueous ammonia (or amines) media, removal efficiencies of Hg and As in FGDG samples were evaluated during CO2 sequestration. Higher than 90% and 20% removal efficiencies, respectively, for Hg and As are achieved at 40°C in aqueous ammonia media, but they decrease at elevated temperatures. Ammonia loss takes place at 80°C and pH varies greatly with temperatures in aqueous ammonia. This is disadvantageous for the formation of Hg-ammonia complexes and for the yield of carbonates, which are responsible for Hg or As re-adsorption. The sequential chemical extraction method suggests that the speciation changes of Hg are induced by FGDG carbonation, and that unstable Hg speciation in triethanolamine increases at elevated temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app