Add like
Add dislike
Add to saved papers

Columnar-Intrinsic Cues Shape Premotor Input Specificity in Locomotor Circuits.

Cell Reports 2017 October 25
Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app