Add like
Add dislike
Add to saved papers

LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension.

In pulmonary hypertension (PH), pulmonary arterial smooth muscle cells (PASMCs) are dedifferentiated, undergoing a contractile-to-synthetic phenotypic switching. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays diverse roles in the cardiovascular system, but its contribution to PH remains to be fully defined. The present study was undertaken to explore the role of LOX-1 in PASMCs dedifferentiation in hypoxia-induced pulmonary vascular remodeling and PH. In a rat model of hypoxic PH, pulmonary vascular remodeling was accompanied by increased expression of LOX-1 in pulmonary arteries. In primary rat PASMCs, hypoxia-induced PASMCs dedifferentiation occurred concomitantly with LOX-1 upregulation. Inhibition of LOX-1 by either siRNA knockdown or neutralizing antibody significantly ameliorated PASMCs dedifferentiation. Mechanistically, LOX-1 promotes PASMCs dedifferentiation under hypoxic conditions via ERK1/2-Elk-1/MRTF-A/SRF signaling pathway. In conclusion, our data uncovers an important role of LOX-1 in the maintenance of PASMCs phenotype. Therapeutic targeting of LOX-1/ERK1/2-Elk-1/MRTF-A/SRF signaling axis would be exploited to treat hypoxic PH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app