Add like
Add dislike
Add to saved papers

Un-gating and allosteric modulation of a pentameric ligand-gated ion channel captured by molecular dynamics.

Pentameric ligand-gated ion channels (pLGICs) mediate intercellular communication at synapses through the opening of an ion pore in response to the binding of a neurotransmitter. Despite the increasing availability of high-resolution structures of pLGICs, a detailed understanding of the functional isomerization from closed to open (gating) and back is currently missing. Here, we provide the first atomistic description of the transition from open to closed (un-gating) in the glutamate-gated chloride channel (GluCl) from Caenorhabditis Elegans. Starting with the active-state structure solved in complex with the neurotransmitter L-glutamate and the positive allosteric modulator (PAM) ivermectin, we analyze the spontaneous relaxation of the channel upon removal of ivermectin by explicit solvent/membrane Molecular Dynamics (MD) simulations. The μs-long trajectories support the conclusion that ion-channel deactivation is mediated by two distinct quaternary transitions, i.e. a global receptor twisting followed by the radial expansion (or blooming) of the extracellular domain. At variance with previous models, we show that pore closing is exclusively regulated by the global twisting, which controls the position of the β1-β2 loop relative to the M2-M3 loop at the EC/TM domain interface. Additional simulations with L-glutamate restrained to the crystallographic binding mode and ivermectin removed indicate that the same twisting isomerization is regulated by agonist binding at the orthosteric site. These results provide a structural model for gating in pLGICs and suggest a plausible mechanism for the pharmacological action of PAMs in this neurotransmitter receptor family. The simulated un-gating converges to the X-ray structure of GluCl resting state both globally and locally, demonstrating the predictive character of state-of-art MD simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app