JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

CD59 association with infectious bronchitis virus particles protects against antibody-dependent complement-mediated lysis.

CD59 protein functions as a negative regulator of the terminal pathway of the complement system by binding to the C8/C9 factors. To date, little is known about the role of CD59 in coronavirus infectious bronchitis virus (IBV) infection. In this study, we discovered that CD59 was downregulated in IBV-infected cells and was associated with IBV virions. This association protected IBV particles from antibody-dependent complement-mediated lysis. IBV titres in the supernatant were significantly increased when CD59 proteins were overexpressed in cells followed by IBV infection, and this observation was further supported by knockdown or cleavage of CD59. Because no considerable change in IBV N protein and viral RNA levels was detected in total cell lysates prepared from the overexpression, knockdown or cleavage of CD59 groups, our data indicated that CD59 was involved in IBV particle release and that IBV had evolved a mechanism to utilize CD59 to evade complement-mediated destruction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app