Add like
Add dislike
Add to saved papers

Molecular Inhibitory Mechanism of Dihydromyricetin on Mushroom Tyrosinase.

Tyrosinase is the rate-limiting enzyme for controlling the production of melanin in the human body, and overproduction of melanin can lead to a variety of skin disorders. In this paper, the inhibitory kinetics of Dihydromyricetin (DHM) on tyrosinase and their binding mechanism were determined using spectroscopy, molecular docking, antioxidant assays and chromatography. The spectroscopic results indicate that DHM reversibly inhibits tyrosinase in a mix-type manner through a multiphase kinetic process with the IC50 of 849.88 μM. It is shown that DHM has a strong ability to quench the intrinsic fluorescence of tyrosinase mainly through a static quenching procedure, suggesting that a stable DHM-tyrosinase complex is generated. Molecular docking results suggest that the dominant conformation of DHM does not directly bind to the active site of tyrosinase. Moreover, the antioxidant assays demonstrate that DHM has powerful antioxidant and reducing capacity but does not have the ability to reduce dopachrome to L-DOPA. Interestingly, the results of spectroscopy and chromatography indicate that DHM is a substrate of tyrosinase but not a suicide-substrate. The possible inhibitory mechanism is proposed, which will be helpful to design and search for tyrosinase inhibitors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app