Add like
Add dislike
Add to saved papers

Structurally Analogous Degradable Version of Fluorene-Bipyridine Copolymer with Exceptional Selectivity for Large-Diameter Semiconducting Carbon Nanotubes.

Separation of electronically pure, narrowly dispersed, pristine, semiconducting single-walled carbon nanotubes (CNTs) from a heterogeneous as-synthesized mixture is essential for various semiconducting technologies and biomedical applications. Although conjugated polymer wrappers are often utilized to facilitate electronic-type sorting, it is highly desirable to remove organic residues from the resulting devices. We report here the design and synthesis of a mild acid-degradable π-conjugated polyimine polymer, poly[(9,9-di-n-octyl-2,7-fluoren-dinitrilomethine)-alt-co-(6,6'-{2,2'-bipyridyl-dimethine})] (PFO-N-BPy), that is structurally analogous to the commonly used and commercially available poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy). An acid cleavable imine link (-HC═N-) was introduced in the PFO-N-BPy backbone to impart degradability, which is absent in PFO-BPy. PFO-N-BPy was synthesized via a metal catalyst-free aza-Wittig reaction in high yields. PFO-N-BPy with a degree of polymerization of just ∼10 showed excellent (>99% electronic purity) selectivity for both large-diameter (1.3-1.7 nm) arc-discharge semiconducting CNTs (S-CNTs) and smaller diameter (0.8-1.2 nm) high-pressure carbon monoxide disproportionation reaction S-CNTs. Overall, the selectivity for the semiconducting species is similar to that of PFO-BPy but with an advantage of complete depolymerization under mild acidic conditions into recyclable monomers. We further show by ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy that the PFO-N-BPy-wrapped S-CNTs can be aligned into a monolayer array on gate dielectrics using a floating evaporative self-assembly process from which the polymer can be completely removed. Short channel field effect transistors were fabricated from the polymer-stripped aligned S-CNT arrays, which further confirmed the semiconducting purity on the order of 99.9% or higher.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app