JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The Use of Antisense Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy.

Antisense oligonucleotides (AONs) hold great promise for therapeutic splice-switching correction in many genetic diseases and in particular for Duchenne muscular dystrophy (DMD), where AONs can be used to reframe the dystrophin transcript and give rise to a partially deleted but yet functional dystrophin protein. Many different chemistries of AONs can be used for splice switching modulation, and some of them have been evaluated in clinical trials for DMD. However, despite advances in AON chemistry and design, systemic use of AONs is limited due to poor tissue uptake, and sufficient therapeutic efficacy is difficult to achieve. Therefore, there is still a critical need to develop efficient AONs able to restore the expression of dystrophin in all relevant tissues and international efforts are currently on going to develop new compounds or alternative chemistries with higher therapeutic potential. Here, we describe the methods to evaluate the potency of antisense oligonucleotides, and in particular of tricyclo-DNA (tcDNA)-AONs, a novel class of AONs which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We focus on the most widely used mouse model for DMD, the mdx mouse and detail methods to analyze the skipping of the mouse exon 23 both in vitro in H2K mdx cells and in vivo in the mdx mouse model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app