Add like
Add dislike
Add to saved papers

Identification of Splicing Factors Involved in DMD Exon Skipping Events Using an In Vitro RNA Binding Assay.

Mutation-induced exon skipping in the DMD gene can modulate the severity of the phenotype in patients with Duchenne or Becker Muscular Dystrophy. These alternative splicing events are most likely the result of changes in recruitment of splicing factors at cis-acting elements in the mutated DMD pre-mRNA. The identification of proteins involved can be achieved by an affinity purification procedure. Here, we provide a detailed protocol for the in vitro RNA binding assay that we routinely apply to explore molecular mechanisms underlying splicing defects in the DMD gene. In vitro transcribed RNA probes containing either the wild type or mutated sequence are oxidized and bound to adipic acid dihydrazide-agarose beads. Incubation with a nuclear extract allows the binding of nuclear proteins to the RNA probes. The unbound proteins are washed off and then the specifically RNA-bound proteins are released from the beads by an RNase treatment. After separation by SDS-PAGE, proteins that display differential binding affinities for the wild type and mutant RNA probes are identified by mass spectrometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app