Add like
Add dislike
Add to saved papers

Sigma factor RpoN employs a dual transcriptional regulation for controlling twitching motility and biofilm formation in Lysobacter enzymogenes OH11.

Current Genetics 2018 April
Lysobacter is a Gram-negative genus comprising a group of environmental bacteria with abilities to produce abundant novel antibiotics, as well as adopting a unique type IV pilus (T4P)-mediated twitching motility (TM) that remains poorly understood. Here, we employ L. enzymogenes OH11 exhibiting significant antifungal activity as a working model to address this issue. Via mutating the 28 potential sigma factors in strain OH11, we have identified one protein RpoNOH11 (sigma 54) that is indispensable for T4P formation and TM. We further showed that RpoNOH11 not only regulates the transcription of pilA, but also another crucial gene chpA that encodes a hybrid two-component transduction system. The L. enzymogenes RpoNOH11 was found to directly bind to the promoter of chpA to control its transcription, which is found to be essential for the T4P-mediated TM. To our knowledge, such a transcriptional regulation performed by RpoN in control of bacterial TM has never been reported. Finally, we showed that L. enzymogenes OH11 could also produce biofilm that is likely employed by this strain to infect fungal pathogens. Mutation of rpoN OH11 , pilA and chpA all led to a significant decrease in biofilm formation, suggesting that the dual transcriptional regulation of pilA and chpA by RpoNOH11 plays a key role for RpoNOH11 to modulate the biofilm formation in L. enzymogenes. Overall, this study identified chpA as a new target of RpoN for controlling the T4P-mediated twitching motility and biofilm formation in L. enzymogenes OH11.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app