Add like
Add dislike
Add to saved papers

MicroRNA‑329 serves a tumor suppressive role in colorectal cancer by directly targeting transforming growth factor beta‑1.

Colorectal cancer (CRC) is the third most common type of diagnosed cancer and the fourth leading cause of cancer‑associated mortalities worldwide. Increasing studies have demonstrated that the deregulation of microRNAs (miRNAs or miRs) is associated with the occurrence and development of multiple types of human cancer, including CRC. miR‑329 has been identified to be downregulated in various types of cancer; however, its expression pattern, functions and mechanisms in CRC remain unclear. The present study demonstrated that miR‑329 was lowly expressed in CRC tissue samples and cell lines. Low expression of miR‑329 was correlated with tumor‑node‑metastasis stage and lymph node metastasis in patients with CRC. In vitro experiments revealed that resumption expression of miR‑329 suppressed cell proliferation and invasion in CRC. Furthermore, the results of the present study indicated that miR‑329 targets transforming growth factor‑β1 (TGF‑β1) directly in vitro. TGF‑β1 was demonstrated to be upregulated in CRC tissue samples and inversely correlated with miR‑329 expression. Upregulation of TGF‑β1 was able to partially counteract the antitumor roles of miR‑329 on CRC cell proliferation and invasion. The results of the current study revealed that miR‑329 suppresses CRC cell proliferation and invasion through targeting TGF‑β1, thus suggesting that targeting miR‑329/TGF‑β1 may provide a novel effective therapeutic approach for the treatment of patients with CRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app