Add like
Add dislike
Add to saved papers

Successive energy transfer within multiple photosensitizers assembled in a hexameric hemoprotein scaffold.

An assembly of multiple photosensitizers is demonstrated by development of a hexameric hemoprotein (HTHP) scaffold as a light harvesting model to replicate the successive energy transfer occuring within photosensitizer assemblies of natural systems. In our model, six zinc protoporphyrin IX (ZnPP) molecules are arrayed at the heme binding site of HTHP by supramolecular interactions and five fluorescein (Flu) molecules and one Texas Red (Tex) molecule as donor and acceptor photosensitizers, respectively, are attached to the HTHP protein surface with covalent linkages. The flow of excited energy from photoexcited Flu to Tex occurs via two pathways: direct energy transfer from Flu to Tex (path 1) and energy transfer via ZnPP (path 2). Steady state and time-resolved fluorescence measurements reveal that the energy transfer ratio of these pathways (path 1 : path 2) is 39 : 61. These findings indicate that the excited energy originating at five Flu and six ZnPP molecules is collected at one Tex molecule as a funnel-like bottom for light harvesting. The present system using the hexameric hemoprotein scaffold is a promising candidate for construction of an artificial light harvesting system having multiple photosensitizers to promote efficient use of solar energy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app