Add like
Add dislike
Add to saved papers

DNA methylation analysis in malignant pheochromocytoma and paraganglioma.

AIMS: In recent years, aberrant DNA methylation of specific CpG sites has been detected in many types of malignant tumors, and the epigenetic regulation of promoter CpG sites is considered an important mechanism underlying carcinogenesis. This study aimed to establish the epigenetics of the malignant transformation of malignant pheochromocytoma (PCC) and paraganglioma (PGL) by performing a methylation analysis.

MATERIALS AND METHODS: Based on the results of the Infinium HumanMethylation450 BeadChip array using DNA samples of PCC/PGL patients, candidate CpG sites that were hyper/hypo-methylated in metastatic tumors relative to those in the primary tumors of 2 patients with malignant PCC/PGL were selected. The methylation levels of the chosen candidate CpG sites were evaluated quantitatively.

RESULTS: Twelve CpG sites were selected as hypermethylated candidates, and 16 CpG sites were selected as hypomethylated candidates. Using two quantitative methylation analysis methods, one hypermethylated site (cg02119938) and one hypomethylated site (cg26870725) remained as candidates. These sites were related to ACSBG1 (acyl-CoA synthetase bubblegum family member 1) and MAST1 (microtubule-associated serine-threonine kinase 1), respectively. Immunohistochemical studies of ACSBG1 and MAST1 revealed that epigenetic changes in the malignant transformation of PCC/PGL might be associated with ACSBG1 silencing or MAST1 overexpression.

CONCLUSIONS: Here, we report two noteworthy genes, ACSBG1 and MAST1 ; the aberrant promoter methylation/demethylation of these genes might be involved in their silencing/expression in malignant PCC/PGL. Further investigations are necessary to determine the role of ACSBG1 and/or MAST1 expression in malignant transformation and to establish pathological markers that can evaluate the malignant potential of PCC/PGL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app