Add like
Add dislike
Add to saved papers

Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation.

Intravesical instillation of antitumor agents following transurethral resection of bladder tumors is the standard strategy for the treatment of superficial bladder cancers. However, the efficacy of current intravesical instillation is limited partly due to the poor permeability of the urothelium. We therefore aimed to develop a high-penetrating, target-releasing drug delivery system to improve the efficacy of intravesical instillation. PAMAM, a dendrimer, were conjugated with polyethylene glycol (PEG) to form PEG-PAMAM complex as a nanocarrier. Doxorubicin (DOX) was then encapsulated into PEG-PAMAM to generate DOX-loaded PEG-PAMAM nanoparticles (PEG-PAMAM-DOX). Our results indicated that the PEG-PAMAM was a stable nanocarrier with small size and great biosafety. The release of DOX from PEG-PAMAM-DOX was sluggish but could be effectively triggered in an acid microenvironment (pH =5.0). As a drug carrier, PEG-PAMAM could penetrate mice bladder urothelium effectively and increase the amount of DOX within the bladder wall after intravesical instillation. The antitumor effect of PEG-PAMAM-DOX was evaluated using an orthotopic bladder cancer model in mice. Compared to free DOX, PEG-PAMAM-DOX showed significantly improved efficacy of DOX for intravesical instillation with limited side effects. In conclusion, we successfully developed a PEG-PAMAM-based drug delivery system to enhance the antitumor effect of intravesical instillation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app