Add like
Add dislike
Add to saved papers

Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials.

Scientific Reports 2017 October 25
Novel hybrid metal-graphene metamaterials featuring dynamically controllable single, double and multiple plasmon induced transparency (PIT) windows are numerically explored in the terahertz (THz) regime. The designed plasmonic metamaterials composed of a strip and a ring with graphene integration generate a novel PIT window. Once the ring is divided into pairs of asymmetrical arcs, double PIT windows both with the spectral contrast ratio 100% are obtained, where one originates from the destructive interference between bright-dark modes, and the other is based on the interaction of bright-bright modes. Just because the double PIT windows are induced by two different mechanisms, the continuously controllable conductivity and damping of graphene are employed to appropriately interpret the high tunability in double transparency peaks at the resonant frequency, respectively. Moreover, multiple PIT windows can be achieved by introducing an additional bright mode to form the other bright-bright modes coupling. At the PIT transparent windows, the dispersions undergo tremendous modifications and the group delays reach up to 43 ps, 22 ps, and 25 ps, correspondingly. Our results suggest the existence of strong interaction between the monolayer graphene layer and metal-based resonant plasmonic metamaterials, which may hold widely applications in filters, modulators, switching, sensors and optical buffers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app