Add like
Add dislike
Add to saved papers

Cytocompatibility and antibacterial activity of nanostructured H 2 Ti 5 O 11 ·H 2 O outlayered Zn-doped TiO 2 coatings on Ti for percutaneous implants.

Scientific Reports 2017 October 25
To improve skin-integration and antibacterial activity of percutaneous implants, the coatings comprising an outer layer of H2 Ti5 O11 ·H2 O (HTO) nanoarrays and an inner layer of microporous Zn-doped TiO2 were fabricated on Ti by micro-arc oxidation (MAO) followed with hydrothermal treatment (HT). During HT process, a large proportion of Zn2+ migrated out from TiO2 layer. TiO2 reacted with OH- and H2 O, resulting in the nucleation of HTO. The nuclei grew to nanoplates, nanorods and nanofibres with HT process prolonged. Simultaneously, the orientation of nanoarrays changed from quasi-vertical to parallel to substrate. Compared to Ti, adhesion and proliferation of fibroblasts were enhanced on as-MAOed TiO2 and HTed coatings. The phenotype, differentiation and extracellular collagen secretion were obviously accelerated on vertical nanorods with proper interspace (e.g. 63 nm). HTed coatings showed enhanced antibacterial activity, which should be ascribed to the nano-topography of HTO.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app