JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of a teleost membrane-associated protein that is involved in the regulation of complement activation and bacterial infection.

In mammals, membrane-associated complement regulatory proteins (MCRP) can protect host cells from the damaging of the activated complement. In teleost, few studies on the function of MCRP have been documented. In the present report, we identified a MCRP (named CsMCRP) from the teleost fish tongue sole Cynoglossus semilaevis and examined its immune function. CsMCRP shares moderate sequence identities with fish DAF-like molecules. CsMCRP was predicted to be a transmembrane protein with three short consensus repeats located in the extracellular region. CsMCRP expression occurred in nine different tissues, especially blood, and in peripheral blood leukocytes (PBL). Recombinant CsMCRP inhibited complement activation and interacted with bacterial pathogen, the latter in a highly selective manner. Antibody blocking the CsMCRP on PBL significantly inhibited bacterial infection of PBL. These results indicate that teleost CsMCRP is both a regulator of complement activation and a cellular receptor involved in bacterial invasion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app