Add like
Add dislike
Add to saved papers

Generalized concentration addition accurately predicts estrogenic potentials of mixtures and environmental samples containing partial agonists.

Cell-based bioanalytical tools are considered one alternative to overcome limitations of sensitivities of instrumental, analytical chemistry for monitoring estrogenic chemicals in the environment. Because these tools also reflect non-additive interactions of chemicals in mixtures, their outcomes often deviate from outcomes of chemical analytical approaches that assume additivity, e.g. the concentration addition (CA) model. Often this is because CA is unable to adequately represent effects of partial agonists, i.e. estrogens with lesser efficacies compared to 17β-estradiol. A generalized concentration addition (GCA) model has been proposed to address this shortcoming. In the present study, we investigated effects of mixtures of isomers of nonylphenol as partial model agonists in a cell-based estrogenicity assay. Whether the GCA model was able to more accurately predict the outcomes of these and previously published mixture experiments was evaluated, as well as the potency of a set of comprehensively characterized sewage effluent samples, compared to CA. If samples contained partial agonists, the GCA model consistently predicted potencies of mixtures and extracts of environmental samples more accurately than did the CA model. These findings enable more accurate estimations of potencies of estrogenicity explained by concentrations of agonists and partial agonists, thus significantly improving the ability to identify causative chemicals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app