Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tetramethylpyrazine suppresses angiotensin II-induced soluble epoxide hydrolase expression in coronary endothelium via anti-ER stress mechanism.

Activation of soluble epoxide hydrolase (sEH) is associated with endothelial dysfunction in hypertension, though the underlying mechanisms are inadequately understood and the role of endoplasmic reticulum (ER) stress is yet to be studied in detail. Tetramethylpyrazine (TMP), a major bioactive ingredient of Chinese herb Chuanxiong, is well-known for its cardiovascular benefits. Nevertheless, whether TMP may protect vascular endothelium from ER stress and whether regulation of sEH is involved remain unknown. This study aimed at investigating the role of ER stress in angiotensin-II (Ang-II)-induced sEH dysregulation and elucidating the significance of ER stress regulation in the vasoprotective effect of TMP. Porcine primary coronary artery endothelial cells (PCECs) were used for western blot, ELISA, and reverse-transcription PCR analysis. Porcine coronary arteries were assessed in a myograph for endothelial dilator function. Ang-II induced expression of ER stress molecules in PCECs meanwhile enhanced sEH expression and decreased 11,12-EET. Exposure of PCECs to the chemical ER stress inducer tunicamycin also increased sEH expression. Inhibition of ER stress suppressed sEH upregulation, resulting in an increase of 11,12-EET. The impairment of endothelium-dependent vasorelaxation induced by Ang-II or tunicamycin was ameliorated by inhibitors of ER stress or sEH. TMP showed comparable inhibitory effect to ER stress inhibitors on the expression of ER stress molecules, the dysregulation of sEH/EET, and the impairment of endothelial dilator function. We demonstrated that ER stress mediates Ang-II-induced sEH upregulation in coronary endothelium. TMP has potent anti-ER stress capacity through which TMP normalizes sEH expression and confers protective effect against Ang-II on endothelial function of coronary arteries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app