Add like
Add dislike
Add to saved papers

Up-regulation of miR-181a in clear cell renal cell carcinoma is associated with lower KLF6 expression, enhanced cell proliferation, accelerated cell cycle transition, and diminished apoptosis.

OBJECTIVES: Dysregulated expression of miR-181a accompanies tumorigenesis in many human cancers. However, in clear cell renal cell carcinoma (ccRCC), the role of miR-181a remains unclear. The aim of this study was to investigate biological functions of miR-181a and its expression levels in ccRCC tissues and cancer cell lines.

MATERIAL AND METHODS: Expression levels of miR-181a in samples of ccRCC tumors and adjacent nontumor tissues from 42 patients as well as in 786-O, 769-P, A498, and CAKI-1 ccRCC cell lines were determined by quantitative real-time polymerase chain reaction. Potential targets of miR-181a were predicted using bioinformatic approaches and then verified by using the luciferase reporter assay. The effects of miR-181a on cell proliferation, colony formation, cell cycle progression, and apoptosis were investigated in ccRCC cell lines transfected with specific miR-181a mimic and inhibitor.

RESULTS: We found that miR-181a expression was up-regulated in ccRCC tissues and cell lines. The expression level of miR-181a significantly correlated with the tumor size, tumor/node/metastasis staging, and Fuhrman grade. Luciferase assays showed that KLF6 was a target of miR-181a. KLF6 expression was inversely correlated with the level of miR-181a. Overexpression of miR-181a led to reduced KLF6 mRNA and protein levels, whereas mutations of the potential miR-181a binding sites in the KLF6 gene abrogated this inhibitory effect. Furthermore, overexpression of miR-181a promoted proliferation and G1/S cell cycle transition, as well as inhibited apoptosis by down-regulating KLF6 in ccRCC cells.

CONCLUSIONS: miR-181a is up-regulated in ccRCC and may act as a tumor promoting factor by targeting KLF6 expression. Manipulating miR-181a may provide a beneficial effect in the treatment of ccRCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app