Add like
Add dislike
Add to saved papers

Lipidomic Changes in Skeletal Muscle in Patients after Biliopancreatic Diversion.

The mechanisms behind the fast improvements of insulin sensitivity and release of the diabetic metabolic state after bariatric surgery are still not completely understood. To further elucidate the effects on the individual cellular level, we applied mass spectrometry to investigate the changes in the lipidomic profile of skeletal muscle cells before and after biliopancreatic diversion in six patients. We found a decrease in lipid storage species, mainly triacylglycerides (e. g., TAG 52:2 from 19.84 to 13.26 mol%; p=0.028), and an increase in structural and signaling lipids, including phosphatidylcholines [PC 36:2 (18:1/18:1) from 0.12 to 0.65 mol%; p=0.046], phosphatidylinositols (PI 36:2 from 0.008 to 0.039 mol%; p=0.046), and cardiolipins (CL 72:8 from 0.16 to 1.22 mol%; p=0.043). The proportional increase in structural lipids was directly and the decrease in TAGs was inversely correlated to improved post-operative insulin sensitivity, measured by euglycemic hyperinsulinemic clamp. Thus, short-term recovery of insulin sensitivity after biliopancreatic diversion may, beside gut hormonal adaptation, mechanical factors, shifts in the gut microbiome, and changes in bile acid and phospholipid metabolism, additionally be attributed to a metabolic recovery of skeletal muscle cells, reflected by normalization of the cellular lipidomic profile. Further studies are needed to investigate whether improved insulin sensitivity of skeletal muscle might be directly associated with the degradation of ectopic triglycerides, thereby reducing the reservoir of lipotoxic intermediates, which might interfere with insulin signaling and hamper mitochondrial metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app