Add like
Add dislike
Add to saved papers

Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO 2 nanocomposite.

The activated carbon (AC) was obtained from waste scrap tires and modified by bimetallic Fe and Ce nanoparticles in order to combine both the high surface area and the active sites for enhanced adsorption of the dye. The produced nanocomposite was used as a novel cost-effective magnetic in rhodamine B (RhB) removal from aqueous solutions. The FT-IR, SEM, EDX, TEM, and surface area analysis methods were implemented to characterize the morphological, chemical, thermal and surface properties of the developed adsorbent. The optimum batch experimental conditions were found under the response surface methodology. The adsorption equilibrium data were well fitted by the Langmuir isotherm model. The adsorption capacity was 324.6 mg g-1 . The kinetic and thermodynamics studies were also carried out to understand the adsorption mechanism. The study indicated that RhB adsorption by the AC/Fe/Ce magnetic adsorbent has an endothermic character and followed the pseudo-second-order kinetics model. By using ethanol solution, RhB was desorbed at high efficiency and the prepared material could be recycled for up to ten cycles. Thus, the magnetic nanocomposite is an effective and promising adsorbent for the cleaning treatment of RhB ions from wastewater by a large scale designed adsorption system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app