EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation.

Methods based on photoelectrochemistry have been developed for immunoassay, but most involve in a low sensitivity and a relatively narrow detectable range. Herein a new bio-bar-code-based split-type photoelectrochemical (PEC) immunoassay was designed for sensitive detection of prostate-specific antigen (PSA), coupling rolling circle amplification (RCA) with enzymatic biocatalytic precipitation. The bio-bar-code-based immunoreaction was carried out on monoclonal anti-PSA antibody (mAb1 )-coated microplate using primer DNA and polyclonal anti-PSA antibody-conjugated gold nanoparticle (pDNA-AuNP-pAb2 ) with a sandwich-type assay format. Accompanying the immunocomplex, the labeled primer DNA on gold nanoparticle readily triggered RCA reaction in the presence of padlock probe/dNTPs/ligase/polymerase. The RCA product with a long single-stranded DNA could cause the formation of numerous hemin/G-quadruplex-based DNAzyme concatamers. With the assistance of nicking endonuclease, DNAzyme concatamers were dissociated from gold nanoparticle, which catalyzed the precipitation of 4-chloro-1-naphthol in the presence of H2 O2 onto CdS nanorods-coated electrode (as the photoanode for the generated holes). The formed insoluble precipitate inhibited the electron transfer from the solution to CdS nanorods-modified electrode by using ascorbic acid as the electron donor. Under the optimum conditions, the photocurrent of the modified electrode decreased with the increasing of PSA concentration. A detectable concentration for target PSA with this system could be achieved as low as 1.8pgmL-1 . In addition, our strategy also showed good reproducibility, high specificity and accuracy matched well with commercial PSA ELISA kits for real sample analysis. These remarkable properties revealed that the developed PEC immunoassay has great potential as a useful tool for the detection of PSA in practical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app