Add like
Add dislike
Add to saved papers

Phosphorus dissolution from dewatered anaerobic sludge: Effect of pHs, microorganisms, and sequential extraction.

Bioresource Technology 2018 Februrary
Phosphorus (P) and iron mass balance from Limassol Wastewater Treatment Plant showed that the major removal and accumulation occurred at the aerobic secondary stage and at Dewatered Anaerobic Sludge (DWAS), respectively. The purpose of this study was to examine various parameters that effect the P dissolution under low pH from DWAS. The parameters that significantly contribute to P extraction were the exposure to pH 2.5, the anaerobic conditions and the sequential extraction. The addition of chemolithotrophic acidophilic bacteria has negatively influenced P dissolution, whereas the addition of acidophilic Heterotrophic Iron Reducing (HIR) bacteria has slightly increased P dissolution but they contributed to pH maintenance at lower levels compared to no addition of HIR. P fractionation of the residual sludge after sequential extraction pointed out that the organically bound P was hardly dissoluted from DWAS. The residual DWAS after acid treatment generated around 45% less methane compared to the initial DWAS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app