Add like
Add dislike
Add to saved papers

Cobalt(II) Magnetic Metal-Organic Framework with an Effective Kagomé Lattice, Large Surface Area, and High Spin-Canted Ordering Temperature.

To make a porous material with high magnetic ordering temperature is challenging because the low density of the material is adverse to the dense magnetic moment, a prerequisite to high-performance magnets. Herein, we report a hollow magnetic metal-organic framework (MMOF) [Co3 (bpdc)3 (tpt)0.66 ] 1 (H2 bpdc = 4,4'-biphenyldicarboxylic acid) with a Langmuir surface area of 1118 m2 /g and spin-canted long-range magnetic ordering up to 22 K. Such a high performance is owing to the unique antiferromagnetic Kagomé lattice made of ferromagnetic Co3 clusters and conjugated 2,4,6-tri(4-pyridinyl)-1,3,5-triazine (tpt) ligands, which is closely coupled with each other via double-interpenetration of the porous networks. Moreover, a parameter defined as the product of magnetic ordering/blocking temperature and the surface area for measuring the performance of porous molecular magnets is proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app