Add like
Add dislike
Add to saved papers

Generation and Characterization of Functional Human Hypothalamic Neurons.

Neurons in the hypothalamus orchestrate homeostatic physiological processes and behaviors essential for life. Defects in the function of hypothalamic neurons cause a spectrum of human diseases, including obesity, infertility, growth defects, sleep disorders, social disorders, and stress disorders. These diseases have been studied in animal models such as mice, but the rarity and relative inaccessibility of mouse hypothalamic neurons and species-specific differences between mice and humans highlight the need for human cellular models of hypothalamic diseases. We and others have developed methods to differentiate human pluripotent stem cells (hPSCs) into hypothalamic neurons and related cell types, such as astrocytes. This protocol builds on published studies by providing detailed step-by-step instructions for neuronal differentiation, quality control, long-term neuronal maintenance, and the functional interrogation of hypothalamic cells by calcium imaging. Together, these protocols should enable any group with appropriate facilities to generate and study human hypothalamic cells. © 2017 by John Wiley & Sons, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app