JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Directed evolution of polypropylene and polystyrene binding peptides.

Surface functionalization of biological inert polymers (e.g., polypropylene PP; polystyrene PS) with material binding peptides facilitates an efficient immobilization of enzymes, bioactive peptides or antigens at ambient temperature in water. The developed robust directed evolution protocol enables to tailor polymer binding anchor peptides (PBPs) for efficient binding under application conditions. Key for a successful directed evolution campaign was to develop an epPCR protocol with a very high mutation frequency (60 mutations/kb) to ensure sufficient diversity in PBPs (47 aas LCI: "liquid chromatography peak I"; 44 aas TA2: "Tachystatin A2"). LCI and TA2 were genetically fused to the reporter egfp to quantify peptide binding on PP and PS by fluorescence analysis. The Peptide-Polymer evolution protocol (PePevo protocol) was validated in two directed evolution campaigns for two PBPs and polymers (LCI: PP; TA2: PS). Surfactants were used as selection pressure for improved PBP binders (non-ionic surfactant Triton X-100; 1 mM for LCI-PP // anionic surfactant LAS; 0.5 mM for TA2-PS). PePevo yielded an up to three fold improved PP-binder (LCI-M1-PP: I24T, Y29H, E42 K and LCI-M2-PP: D31V, E42G) and an up to six fold stronger PS-binder (TA2-M1-PS: R3S, L6P, V12 K, S15P, C29R, R30L, F33S, Y44H and TA2-M2-PS: F9C, C24S, G26D, S31G, C41S, Y44Q).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app