Add like
Add dislike
Add to saved papers

Fungal β-Glucan Activates the NLRP3 Inflammasome in Human Bronchial Epithelial Cells Through ROS Production.

Inflammation 2018 Februrary
The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has developed as an important bridge between innate immune and infection recently, and has the ability to drive proteolytic procaspase-1 into bioactive caspase-1, then responsible for proteolytic processing of inflammatory cytokines IL-1β and IL-18. Fungal β-glucan, a major component of fungal cell wall, triggers inflammatory response in multiple immune cells, but rarely described in epithelial cells. Also, the relationship between fungal β-glucan and NLRP3 inflammasome is not clear yet. In this study, we first identified that curdlan, a large particulate β-glucan, could activate the NLRP3 inflammasome in LPS-primed human bronchial epithelial cells (HBECs). RT-PCR and Western Blot showed that curdlan upregulate the mRNA as well as intracellular protein expression of NLRP3 and IL-1β in HBECs, along with the activity of caspase-1, and the level of mature IL-1β in cell supernatants was higher by ELISA detection. Further studies demonstrated that the activation of NLRP3 inflammasome could be attenuated by NAC, an inhibitor of ROS. Thus, it indicated curdlan activate NLRP3 inflammasome through a pathway requiring ROS production in HBECs. These findings may provide a new therapeutic target, NLRP3 inflammasome, in invasive pulmonary fungal infections.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app