JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cadherin 22 participates in the self-renewal of mouse female germ line stem cells via interaction with JAK2 and β-catenin.

The self-renewal capacity of the stem cell pool determines tissue function and health. Cadherin-22 (Cdh22), a member of the cadherin superfamily, has two splicing patterns in rats, and the short type that lacks a catenin binding domain is closely related to spermatogonial stem cell self-renewal. Previously, we reported that CDH22 was highly expressed in mouse ovary germ cells, especially in female germ line stem cells (FGSCs). However, its underlying function in FGSCs is still not clear. Here, we found that Cdh22 encodes only one type of protein product in mice and demonstrated that CDH22 was required for FGSC self-renewal. In addition, JAK2 and β-catenin were found to interact with CDH22 and be involved in CDH22 signaling in mouse FGSCs. Moreover, extrinsic CDH22 was identified as a potential molecule that participates in FGSC adhesion and is pivotal for FGSC maintenance and self-renewal. These results reveal that CDH22 functions as an essential molecule in FGSC maintenance and self-renewal via different mechanisms, including interaction with the JAK-STAT signaling pathway and β-catenin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app