Add like
Add dislike
Add to saved papers

Synthesis of Reduced Grapheme Oxide as A Platform for loading β-NaYF 4 :Ho 3+ @TiO 2 Based on An Advanced Visible Light-Driven Photocatalyst.

Scientific Reports 2017 October 24
In this paper a novel visible light-driven ternary compound photocatalyst (β-NaYF4 :Ho3+ @TiO2 -rGO) was synthesized using a three-step approach. This photocatalyst was characterized using X-ray diffraction, Raman scattering spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence spectrometries, ultraviolet-visible diffuse reflectance spectroscopy, Brunauer-Emmett-Teller surface area measurement, electron spin resonance, three-dimensional fluorescence spectroscopy, and photoelectrochemical properties. Such proposed photocatalyst can absorb 450 nm visible light while emit 290 nm ultraviolet light, so as to realize the visible light-driven photocatalysis of TiO2 . In addition, as this tenary compound photocatalyst enjoys effecitve capacity of charge separation, superior durability, and sound adsorb ability of RhB, it can lead to the red shift of wavelength of absorbed light. This novel tenary photocatalyst can reach decomposition rate of RhB as high as 92% after 10 h of irradiation by visible-light Xe lamp. Compared with the blank experiment, the efficiency was significantly improved. Recycle experiments showed that theβ-NaYF4 :Ho3+ @TiO2 -rGOcomposites still presented significant photocatalytic activity after four successive cycles. Finally, we investigated visible-light-responsive photocatalytic mechanism of the β-NaYF4 :Ho3+ @TiO2 -rGO composites. It is of great significance to design an effective solar light-driven photocatalysis in promoting environmental protection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app