Add like
Add dislike
Add to saved papers

FTY720-induced endocytosis of yeast and human amino acid transporters is preceded by reduction of their inherent activity and TORC1 inhibition.

Scientific Reports 2017 October 24
FTY720 is a sphingoid base analog that acts as an anticancer agent in animal models. Its effect on tumor cells stems largely from its ability to trigger endocytosis of several nutrient transporters. The observation that FTY720 similarly stimulates downregulation of amino acid permeases in yeast suggests that the cellular mechanisms it targets, which are still poorly characterized, are evolutionarily conserved. We here report that adding FTY720 to yeast cells results in rapid inhibition of the intrinsic activity of multiple permeases. This effect is associated with inhibition of the TORC1 kinase complex, which in turn promotes ubiquitin-dependent permease endocytosis. Further analysis of the Gap1 permease showed that FTY720 elicits its ubiquitylation via the same factors that promote this modification when TORC1 is inhibited by rapamycin. We also show that FTY720 promotes endocytosis of the LAT1/SLC7A5 amino acid transporter in HeLa cells, this being preceded by loss of its transport activity and by mTORC1 inhibition. Our data suggest that in yeast, TORC1 deactivation resulting from FTY720-mediated inhibition of membrane transport elicits permease endocytosis. The same process seems to occur in human cells even though our data and previous reports suggest that FTY720 promotes transporter endocytosis via an additional mechanism insensitive to rapamycin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app