Add like
Add dislike
Add to saved papers

Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling.

Neuropharmacology 2018 January
Monoacylglycerol lipase (MGL) hydrolyzes 2-arachidonoylglycerol to arachidonic acid and glycerol. Inhibition of MGL may attenuate neuroinflammation by enhancing endocannabinoid signaling and decreasing prostaglandin (PG) production. Almost half of HIV infected individuals are afflicted with HIV-associated neurocognitive disorder (HAND), a neuroinflammatory disease in which cognitive decline correlates with synapse loss. HIV infected cells shed the envelope protein gp120 which is a potent neurotoxin that induces synapse loss. Here, we tested whether inhibition of MGL, using the selective inhibitor JZL184, would prevent synapse loss induced by gp120. The number of synapses between rat hippocampal neurons in culture was quantified by imaging clusters of a GFP-tagged antibody-like protein that selectively binds to the postsynaptic scaffolding protein, PSD95. JZL184 completely blocked gp120-induced synapse loss. Inhibition of MGL decreased gp120-induced interleukin-1β (IL-1β) production and subsequent potentiation of NMDA receptor-mediated calcium influx. JZL184-mediated protection of synapses was reversed by a selective cannabinoid type 2 receptor (CB2 R) inverse agonist/antagonist. JZL184 also reduced gp120-induced prostaglandin E2 (PGE2 ) production; PG signaling was required for gp120-induced IL-1β expression and synapse loss. Inhibition of MGL prevented gp120-induced synapse loss by activating CB2 R resulting in decreased production of the inflammatory cytokine IL-1β. Because PG signaling was required for gp120-induced synapse loss, JZL184-induced decreases in PGE2 levels may also protect synapses. MGL presents a promising target for preventing synapse loss in neuroinflammatory conditions such as HAND.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app