Add like
Add dislike
Add to saved papers

Simultaneous estimation of the in-mean and in-variance causal connectomes of the human brain.

In recent years, the study of the human connectome (i.e. of statistical relationships between non spatially contiguous neurophysiological events in the human brain) has been enormously fuelled by technological advances in high-field functional magnetic resonance imaging (fMRI) as well as by coordinated world wide data-collection efforts like the Human Connectome Project (HCP). In this context, Granger Causality (GC) approaches have recently been employed to incorporate information about the directionality of the influence exerted by a brain region on another. However, while fluctuations in the Blood Oxygenation Level Dependent (BOLD) signal at rest also contain important information about the physiological processes that underlie neurovascular coupling and associations between disjoint brain regions, so far all connectivity estimation frameworks have focused on central tendencies, hence completely disregarding so-called in-variance causality (i.e. the directed influence of the volatility of one signal on the volatility of another). In this paper, we develop a framework for simultaneous estimation of both in-mean and in-variance causality in complex networks. We validate our approach using synthetic data from complex ensembles of coupled nonlinear oscillators, and successively employ HCP data to provide the very first estimate of the in-variance connectome of the human brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app