Add like
Add dislike
Add to saved papers

Image-based fluid dynamics analysis of left ventricle outflow tract pressure gradient after deployment transcatheter mitral valve.

The goal of this study was to develop an image-based model to computational investigate blood flow and pressure gradients resulting from left ventricular (LV) wall motion after the implantation of a mitral valve (MV) prosthesis. Two image-based 3D models were reconstructed from multi-slice computed tomography images obtained from patients undergoing transcatheter MV replacement. Navier-Stokes equations were then used to compute the fluid motion. Outflow tract obstruction of the models with MV prosthesis were identified by calculating the difference between LV systolic and aortic pressures. It was found that computed outflow track obstruction compared well with actual obstruction data obtained from two patients. Our study indicates computational modeling can be a valuable tool to investigate the optimal placement of prosthetic valves guided by individualized anatomical data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app