Add like
Add dislike
Add to saved papers

A non-exercise based V02max prediction using FRIEND dataset with a neural network.

The main goal of this work is the development of models, based on computational intelligence techniques, in particular neural networks, to predict the maximum oxygen consumption value. While the maximum oxygen consumption is a direct mark of the cardiorespiratory fitness, several studies have also confirmed it also as a powerful predictor of risk for adverse outcomes, such as hypertension, obesity, and diabetes. Therefore, the existence of simpler and accurate models, establishing an alternative to standard cardiopulmonary exercise tests, with the potential to be employed in the stratification of the general population in daily clinical practice, would be of major importance. In the current study, different models were implemented and compared: 1) the traditional Wasserman/Hansen equation; 2) linear regression and; 3) non-linear neural networks. Their performance was evaluated based on the "FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base" [1] being, in the present study, a subset of 12262 individuals employed. The accuracy of the models was performed through the computation of sensitivity and specificity values. The results show the superiority of neural networks in the prediction of maximum oxygen consumption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app