JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Finite-element modelling and preliminary validation of microneedle-based electrodes for enhanced tissue electroporation.

This paper investigates the use of microneedle-based electrodes for enhanced testis electroporation, with specific application to the production of transgenic mice. During the design phase, finite-element software has been used to construct a tissue model and to compare the relative performance of electrodes employing a) conventional flat plates, b) microneedle arrays, and c) invasive needles. Results indicate that microneedle-based electrodes can achieve internal tissue field strengths which are an order of magnitude higher than those generated using conventional flat electrodes, and which are comparable to fields produced using invasive needles. Using a double-sided etching process, conductive microneedle arrays were then fabricated and used in prototype electrodes. In a series of mouse model experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP), the performance of flat and microneedle electrodes was compared by measuring GFP expression after electroporation. The main finding, supported by experimental and simulated data, is that use of microneedle-based electrodes significantly enhanced electroporation of testis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app