Add like
Add dislike
Add to saved papers

Electrical bioimpedance spectroscopy as biosensor technique to identify cells lineages and cell differentiation process.

The identification and characterization of diverse cells types and cell differentiation process requires complex techniques as flow cytometry, immunocytochemistry and the exploration of molecular markers; such techniques require infrastructure and qualified personnel. The objective of this study was to analyze the use of Electrical Bioimpedance Spectroscopy (EBIS) measurements as a non-complex alternative technique to identify populations of undifferentiated mouse Pluripotent Stem Cells (mPSCs), Mouse Embryonic Fibroblasts (MEFs) and the differentiation process from preadipocytes (3T3-L1) to mature adipocytes. EBIS measurements were compared in populations of cells which were characterized previously using microscopy. The results indicate that EBIS technique has a potential sensitivity at certain frequency range to discriminate between both evaluated cell populations and some differentiation process. Additional studies with different concentrations to evaluate quantitatively the sensitivity and specificity of the proposed technique are recommended.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app