Add like
Add dislike
Add to saved papers

A 3D model-based simulation of demyelination to understand its effects on diffusion tensor imaging.

Demyelination is the progressive damage to the myelin sheath, a protective covering that surrounds a nerve's axon. Due to its high sensitivity to microscopic tissue changes, diffusion tensor imaging (DTI) is a powerful means of detecting signs of demyelination and axonal injury. In this paper, we present a 3D virtual model capable of simulating the complex Brownian motion of water molecules in a bundle of myelinated axons and glial cells for the purpose of synthesizing DTI data, characterizing and verifying the impact of demyelination on DTI. Our model consists of a highly detailed and realistic 3D representation of biological fiber bundles, with a myelin sheath covering the axons and glial cells in between them. The system simulates the Brownian motion of molecules to extract diffusion data. We perform our experiment for progressive stages of demyelination and demonstrate its effect on DTI measurements.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app