Add like
Add dislike
Add to saved papers

Effects of the temporal pattern of subthalamic deep brain stimulation on the neuronal complexity in the globus pallidus.

Deep brain stimulation (DBS) is a surgical treatment for Parkinson's disease (PD) but, despite clinical efficacy, the mechanisms of DBS still require investigation. Recent evidence suggests that the temporal pattern of the electrical pulses may be critical to the therapeutic merit of DBS and carefully-designed, non-regular patterns could ameliorate some of the motor symptoms in PD. It is unclear, though, how different stimulation patterns affect the neural activity in the basal ganglia and whether this is related to the pathophysiology of PD. In this study, a non-human primate was treated with DBS of the subthalamic nucleus while single-unit recordings were collected in the animal's globus pallidus internus (GPi). Three stimulation patterns were applied (one regular, two non-regular) and the stimulation effects on the GPi spike trains were assessed via point process modeling. On a preliminary set of 23 GPi neurons, we show that regular DBS maximized the neuronal complexity, which is a measure of the amount of information that a single neuron can encode, and significantly increased the dependency of the neurons' spike trains on the background ensemble activity through an articulated balance of excitation and inhibition. Overall, regular DBS caused the largest modulation in the neurons' spiking pattern and the largest increment in encoding capabilities. Both results may be relevant to the mechanisms of therapeutic DBS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app