Add like
Add dislike
Add to saved papers

A mental fatigue index based on regression using mulitband EEG features with application in simulated driving.

Development of accurate fatigue level prediction models is of great importance for driving safety. In parallel, a limited number of sensors is a prerequisite for development of applicable wearable devices. Several EEG-based studies so far have performed classification in two or few levels, while others have proposed indices based on power ratios. Here, we utilized a regression Random Forest model in order to provide more accurate continuous fatigue level prediction. In detail, multiband power features were extracted from EEG data recorded from one hour simulated driving task. Next, cross-subject regression was performed to obtain common fatigue-related discriminative features. We achieved satisfactory prediction accuracy and simultaneously we minimized required electrodes, proposing to use a set of 3 electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app