Add like
Add dislike
Add to saved papers

Influence of trans-spinal magnetic stimulation in electrophysiological recordings for closed-loop rehabilitative systems.

Recent studies have shown the feasibility of spinal cord stimulation (SCS) for motor rehabilitation. Currently, there is an increasing interest in developing closed-loop systems employing SCS for lower-limb recovery. These closed-loop systems are based on the use of neurophysiological signals to modulate the stimulation. It is known that electromagnetic stimulation can introduce undesirable noise to the electrophysiological recordings. However, there is little evidence about how electroencephalographic (EEG) or electromyographic (EMG) activities are corrupted when a trans-spinal magnetic stimulation is applied. This paper studies the effects of magnetic SCS in EEG and EMG activity. Furthermore, a median filter is proposed to ameliorate the effects of the artifacts, and to preserve the neural activity. Our results show that SCS can affect both EEG and EMG, and that, while the median filter works well to clean the EEG activity, it did not improve the contaminations of the EMG activity. The obtained results underline the need of cleaning EMG and EEG signals contaminated by SCS, which is essential for optimal closed-loop rehabilitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app