Add like
Add dislike
Add to saved papers

An extended Kalman filter with inequality constraints for real-time detection of intradialytic hypotension.

Intradialytic hypotension (IDH) is the most common complication of hemodialysis, affecting 15-50% of all dialysis sessions. Previously, we had presented a non-invasive Polyvinylidene Fluoride (PVDF) based sensor in the form of a ring to measure vascular tone and we showed that the morphology of the signal can be utilized to predict IDH. This paper presents an approach for analyzing the PVDF signal using extended Kalman filter (EKF) and a synthetic model that has previously been used to model the ECG signal with Gaussian functions. Moreover, a novel approach for incorporating state inequality constraints into the EKF process using a gradient projection method is introduced. The taut string algorithm was first used to estimate the outline of the signal and remove it to highlight the reflection waves. Then, the EKF was used to characterize the morphology of the signal using Gaussian functions. The amplitudes of the Gaussian functions were used as features to train a classifier. The results indicated that the PPV and NPV for the prediction were 83.33% and 100%, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app