Add like
Add dislike
Add to saved papers

Network-mediated responses of ON ganglion cells to electric stimulation become less consistent across trials during retinal degeneration.

Microelectronic retinal prostheses are being developed to restore sight in individuals blinded by outer retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. Unfortunately, the quality of vision restored by these devices is still limited. To improve the quality of elicited vision, our group studies the responses of retinal neurons to electric stimulation. Our previous work showed that responses mediated through the retinal network are reproducible with high temporal precision, even for spikes that occur >100 ms after stimulus onset. Because they arise through the network, it is important to understand whether such reliability changes in the degenerate retina. Here, we examined response variability at several different stages of degeneration: postnatal day 14 (P14), P18, P31 and P60 in a well-established mouse model of degeneration (rd10). Spiking responses of ON alpha RGCs were recorded multiple times to an identical electric stimulus. We found that the trial-to-trial variability increased over the course of retinal degeneration. This finding may help to explain the reported variability in the quality of elicited vision across subjects using these devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app