Add like
Add dislike
Add to saved papers

Assessing rTMS effects in MdDS: Cross-modal comparison between resting state EEG and fMRI connectivity.

Repetitive transcranial magnetic stimulation (rTMS) has been increasingly explored for many neurological and neuropsychiatric conditions. However, the response rate is variable depending on baseline conditions. Optimizing rTMS protocols to improve treatment effects and response rates will depend on reliably assessing brain state conditions. In this regard, neural activity guided optimization has shown potential in several neuroimaging studies. In this paper, we present our ongoing work on optimizing rTMS treatment of a balance disorder called Mal de Debarquement Syndrome (MdDS), a motion perception disorder caused by entrainment to background motion. Our previous work has revealed that a neuroimaging marker of resting state functional connectivity may help predict therapeutic effect. Motivated by our previous pilot study with fMRI, the present study aims to extend the investigation to EEG data that were simultaneously acquired with fMRI, with the aim of transferring the fMRI imaging marker to a more accessible neural recording technology. Our current findings demonstrate that integrating EEG with fMRI measures of neural synchrony and functional connectivity may hold promise in optimizing rTMS protocols.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app