Add like
Add dislike
Add to saved papers

On the use of higher-order tensors to model muscle synergies.

The muscle synergy concept provides the best framework to understand motor control and it has been recently utilised in many applications such as prosthesis control. The current muscle synergy model relies on decomposing multi-channel surface Electromyography (EMG) signals into a synergy matrix (spatial mode) and its weighting function (temporal mode). This is done using several matrix factorisation techniques, with Non-negative matrix factorisation (NMF) being the most prominent method. Here, we introduce a 4th -order tensor muscle synergy model that extends the current state of the art by taking spectral information and repetitions (movements) into account. This adds more depth to the model and provides more synergistic information. In particular, we illustrate a proof-of-concept study where the Tucker3 tensor decomposition model was applied to a subset of wrist movements from the Ninapro database. The results showed the potential of Tucker3 tensor factorisation in finding patterns of muscle synergies with information about the movements and highlights the differences between the current and proposed model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app